Abstract
Nowadays, coinage metal nanoclusters (NCs) are largely presented in diagnostics, bioimaging, and biocatalysis due to their high biocompatibility, chemical stability, and sensitivity to surrounding biomolecules. Silver and gold NCs are usually characterized by intense luminescence and photostability, which is in great demand in the detection of organic compounds, ions, pH, temperature, etc. The experimental synthesis of metal NCs often occurs on biopolymer templates, mostly DNA and proteins. However, this review mainly focuses on the interactions with small biomolecules (SBMs) of a molecular weight less than 1000 Da: amino acids, nucleobases, thiolates, oligopeptides, etc. Such molecules can serve as the templates for an eco-friendly facile one-pot synthesis of biocompatible luminescent NCs. The latter aspect makes NCs suitable for diagnostics and intracellular bioimaging. Another important aspect is the interaction of clusters with biomarkers, which is largely exploited by nanosensors: biomarker detection often occurs through either fluorescence emission "turn-on" or "turn-off" mechanisms. Moreover, as theoretical studies show, electronic absorption spectra and Raman spectra of the metal-organic complexes allow efficient detection of various analytes. In this regard, both theoretical and experimental studies of SBM complexes with metal NCs are in great demand. Therefore, this review aims to summarize up-to-date studies on the interaction of small biomolecules with coinage metal NCs from both theoretical and experimental viewpoints.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.