Abstract

The effect of carboplatin (CPt) on fibrin(ogen) clot formation and the possible use of this combination for local slow release chemotherapy were examined. CPt significantly reduced thrombin-induced fibrin clotting time (CT) and increased clot turbidity in a concentration-dependent manner. When CPt was mixed with physiological levels of fibrinogen (>1 mg/ml), electron-dense nanoparticles (3 nm) were formed, as demonstrated by both optical particle counter and transmission electron microscopy (TEM). Upon thrombin-induced coagulation, the CPt nanoparticles were trapped within the fibrin mesh. At higher fibrinogen levels (>5 mg/ml), the 3-nm CPt nanoparticles aggregated, so that ∼2% and ∼0.5% of the CPt on the fibrinogen appeared as larger particles of 10 and 50 nm, respectively. Dialysis experiments showed that 60–70% of the CPt was released from the fibrin clot within one hour as a non-particulate soluble form, while ∼30% of particulate CPt were retained. Up to 5 mg/ml this portion of firmly attached CPt was dependent of the initial drug level. CPt released from the fibrin by either diffusion or by fibrinolysis exhibited cytotoxic activity towards retinoblastoma (RB) cell lines (Y-79 and Weri RB1) equivalent to free drug. Our study indicates that CPt enhances fibrin clot formation and suggests the use of fibrin with high dose CPt for slow release chemotherapy against localized tumors such as retinoblastoma.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.