Abstract

A broader use of carbon nanomaterials increases the risk of their inhalation as aerosol dispersed in the air. Inhaled nanometer-sized particles are known to penetrate to the pulmonary region where they interact with the lung surfactant as the first barrier they meet and eventually penetrate to the surface of the cellular layer. This study presents the results of experimental studies of physicochemical interactions between several types of carbon nanomaterials (nanotubes and nanohorns of various size and surface properties) and lipid layers in two qualitatively different experimental systems: Langmuir trough and pulsated drop tensiometer, both providing complementary possibilities to study interfacial properties of the lipid-rich layer. Quantified alterations in mechanical properties if lipid films (equilibrium compressibility, dynamic surface elasticity, and viscosity) indicate that nanocarbons with different wettability may induce concentration-dependent frustration of the lung surfactant and biological membranes in vivo. The observed effects are discussed not only in relation to health effects from nanoparticle inhalation but also to potential medical applications of engineered carbon nanomaterials.

Highlights

  • The respiratory system is a primary gate for nanoparticle (NP) entrance to the organism [1, 2], which is facilitated by the fact that NPs are very light, aerosolized, and remain suspended in the air for a long time

  • carbon nanotubes (CNTs) in sample IV are characterized by the smallest external diameter which corresponds to their large SSA

  • CNHs have quite a different structure than CNTs and their length-to-diameter ratio is close to unity

Read more

Summary

Introduction

The respiratory system is a primary gate for nanoparticle (NP) entrance to the organism [1, 2], which is facilitated by the fact that NPs are very light, aerosolized, and remain suspended in the air for a long time. An important group of such materials is carbon nanomaterials (CNMs) including carbon nanotubes (CNTs) and nanohorns (CNHs) with different size and structure (e.g., single-walled: SWCNTs or multiwalled: MWCNTs). It is estimated than CNTs constitute almost 30% value of the total market of nanomaterials [3]. Health effects of inhaled CNTs depend on their size, architecture, and surface properties. The latter can be modified by functionalization of carbon nanomaterials which is often done to obtain a desired wettability and reactivity in their further practical applications [8]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.