Abstract

The interactions of material surfaces with proteins and cells play a vital role in various biological phenomena and determine the ultimate biofunctionality of a given material in contact with a given biological environment. In this chapter, we used the gold nanoparticle layer (GNPL) with three-dimensional micro- and nano-sized structures as an example to discuss the interactions of material surfaces with proteins and cells. GNPL is deposited onto a variety of substrates such as gold surface and enzyme-linked immunosorbent assay (ELISA) plate; the amount and activity of the absorbed proteins, as well as cell behaviors including attachment, proliferation, and differentiation on GNPL-modified surfaces, are systematically investigated. In addition, the synthetic effects of surface topography and surface chemistry are also studied. The results show that GNPL improves protein adsorption, favors the maintenance of their conformation and bioactivity, and further enhances cell adhesion. After modification with protein-resistant polymers and specific ligands, GNPL selectively binds certain proteins and cells from protein and cell mixtures, including the highly complex environment of serum. Moreover, under laser irradiation, GNPL shows the ability for the delivery of various macromolecules to different cell types including hard-to-transfect cell types. It is concluded that GNPLs hold great promise in many biomedical fields such as protein detection, regulation of cell behavior, capture of circulating cancer cells, and macromolecular delivery to living cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call