Abstract
Ionic liquids (ILs) have been gaining widespread attention due to their plethora of applications. In particular, increasing studies are being carried out to enhance the biological applications of ILs. In this work, a newly synthesized peptide amphiphile comprised of tert-butyl (6-amino-1-((6-aminohexyl) amino)-1-oxohexan-2-yl) carbamate (TAOC) was conjugated with the peptide segment derived from laminin, YIGSR, and self-assembled to form nanofibers. The formed nanofibers were then blended with two separate ionic liquids, betainium bis(trifluoromethylsulfonyl)imide [Hbet][NTf2] and 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide [C4mim][NTf2] to form nanohybrids. To the nanohybrids, collagen (Type IV) was incorporated to further enhance biocompatibility. Our results indicated that the imidazolium-based nanohybrids formed globular assemblies and displayed higher thermal stability and mechanical strength compared to [Hbet][NTf2]-based nanocomposites. The binding interactions with the ionic liquids were probed by FTIR spectroscopy, DSC, TGA as well as predictive COSMO-RS studies, which indicated the key role of hydrogen bonding and hydrophobic interactions. Cell studies with neural cortical cells revealed that in both cases, the nanohybrids reduced cytotoxicity compared to the neat ionic liquids. Furthermore, axonal growths were observed. Such ionic liquid infused peptide nanohybrids, particularly the imidazolium-based nanohybrid gels may have potential for biological applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.