Abstract

From 1989 to 1996, ion deposition in precipitation, throughfall, and stemflow were measured under a deciduous and a coniferous stand, located in the Lake Clair Watershed, during the growing and the dormant seasons. During the growing season, throughfall deposition under both stands was significantly depleted in H+ and NH4+ compared with wet deposition, and a significant uptake of NO3- was observed under the coniferous canopy. Deposition of Ca2+, Mg2+, K+, Na+, Cl-, and SO42- was significantly higher in the throughfall than in the wet precipitation. During the growing season, the coniferous stand was more efficient in retaining nitrogen (NH4+ and NO3-), while H+ was more intensively retained in the deciduous stand. Significant interactions between precipitation and forest canopies were also observed during the dormant season: throughfall depositions of Ca2+, Mg2+, K+, Na+, and Cl- were significantly higher than wet precipitation under both canopies, while throughfall SO42- was significantly enriched only under the coniferous stand. Using a Na+ ratio method, foliar leaching was found mostly responsible for the throughfall enrichment on a full-year basis in both stands, with values averaging 61, 73, and 96% of the total throughfall fluxes for Ca2+, Mg2+, and K+, respectively. Under both stands, net canopy exchange (NCE) of base cations, expressed on a monthly basis, were correlated to water volume and to H+ and SO42- deposition. Multiple regression models including wet SO42- deposition and an estimate of dry S deposition, explained up to 88% (Ca2+ in the coniferous stand) of the variance in base cation NCE under both stands.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call