Abstract

Experimental studies showed that certain angiotensin-converting enzyme inhibitors and angiotensin AT1 receptor antagonists can decrease seizure severity in rodents. Additionally, some of these blockers of the renin-angiotensin system have been documented to enhance the anticonvulsant activity of antiepileptic drugs against maximal electroshock-induced seizures. The aim of the current study was to investigate the effect of aliskiren, a direct renin inhibitor and a novel antihypertensive drug, on the protective action of numerous antiepileptic drugs (carbamazepine, valproate, clonazepam, phenobarbital, oxcarbazepine, lamotrigine, topiramate and pregabalin) in the test of maximal electroshock in mice. The examined drugs were administered intraperitoneally. Aliskiren up to a dose of 75mg/kg did not affect the threshold for electroconvulsions, however, aliskiren (75mg/kg) enhanced the anticonvulsant action of clonazepam and valproate. Following aliskiren treatment, a higher brain concentration of valproate was noted, suggesting a pharmacokinetic interaction. In the rota-rod test, the concomitant treatment with aliskiren (50 or 75mg/kg) and clonazepam (22.6mg/kg) impaired motor coordination while clonazepam (22.6mg/kg) alone showed strong tendency towards this impairment. The combination of aliskiren (75mg/kg) with phenobarbital (25.5mg/kg) caused long-term memory deficits in the passive avoidance task. This study shows that there are no negative interactions between aliskiren and the examined antiepileptic drugs as concerns their anticonvulsant activity. Aliskiren even potentiated the anticonvulsant action of clonazepam and valproate against maximal electroshock. The impact of aliskiren alone on seizure activity or on the anticonvulsant and adverse activity of antiepileptic drugs needs further evaluation in other animal models of seizures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.