Abstract

Reliable information on forces on a finite-sized particle in a turbulent boundary layer is lacking, so workers continue to use standard drag and lift correlations developed for a laminar flow to predict drag and lift forces. Here we consider direct numerical simulations of a turbulent channel flow over an isolated particle of finite size. The size of the particle and its location within the turbulent channel are systematically varied. All relevant length and time scales of turbulence, attached boundary layers on the particle, and particle wake are faithfully resolved, and thus we consider fully resolved direct numerical simulations. The results from the direct numerical simulation are compared with corresponding predictions based on the standard drag relation with and without the inclusion of added-mass and shear-induced lift forces. The influence of turbulent structures, such as streaks, quasi-streamwise vortices and hairpin packets, on particle force is explored. The effect of vortex shedding is also observed to be important for larger particles, whoseReexceeds a threshold.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.