Abstract
Trehalose lipids are bacterial biosurfactants which present interesting physicochemical and biological properties. These glycolipids have a number of different commercial applications and there is an increasing interest in their use as therapeutic agents. The amphiphilic nature of trehalose lipids points to the membrane as their hypothetical site of action and therefore the study of the interaction between these biosurfactants and biological membranes is critical. In this study, we examine the interactions between a trehalose lipid (TL) from Rhodococcus sp. and dimyristoylphosphatidylglycerol (DMPG) membranes at low ionic strength, by means of differential scanning calorimetry, light scattering, fluorescence polarization and infrared spectroscopy. We describe that there are extensive interactions between TL and DMPG involving the perturbation of the thermotropic intermediate phase of the phospholipid, the destabilization and shifting of the DMPG gel to liquid crystalline phase transition to lower temperatures, the perturbation of the sample transparency, and the modification of the order of the phospholipid palisade in the gel phase. We also report an increase of fluidity of the phosphatidylglycerol acyl chains and dehydration of the interfacial region of the bilayer. These changes would increase the monolayer negative spontaneous curvature of the phospholipid explaining the destabilizing effect on the intermediate state exerted by this biosurfactant. The observations contribute to get insight into the biological mechanism of action of the biosurfactant and help to understand the properties of the intermediate phase display by DMPG at low ionic strength.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.