Abstract

Co-transcriptional RNA proofreading by RNA polymerase (RNAP) is essential for accurate mRNA synthesis and reactivation of stalled transcription complexes, which can otherwise compromise genome integrity. RNAP from the stress-resistant bacterium Deinococcus radiodurans exhibits high levels of RNA cleavage in comparison with RNAP from Escherichia coli, which allows it to remove misincorporated nucleotides with high efficiency. Here, we show that the rate of RNA cleavage by D. radiodurans RNAP depends on the structure of the (mis)matched RNA 3′-nucleotide and its contacts with the active site. These interactions likely position the reactive phosphodiester bond in the cleavage-competent conformation, thus facilitating its hydrolysis catalyzed by metal ions in the active center. The universal RNA cleavage factor GreA largely alleviates defects in RNA cleavage caused by modifications in the RNA 3′-nucleotide or in its binding pocket in RNAP, suggesting that GreA functionally substitutes for these contacts. The results demonstrate that various RNAPs rely on a conserved mechanism for RNA proofreading, which can be modulated by changes in accessory parts of the active center.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.