Abstract

We conducted ship-, shore- and laboratory-based crude oil exposure experiments to investigate (1) the effects of crude oil (Louisiana light sweet oil) on survival and bioaccumulation of polycyclic aromatic hydrocarbons (PAHs) in mesozooplankton communities, (2) the lethal effects of dispersant (Corexit 9500A) and dispersant-treated oil on mesozooplankton, (3) the influence of UVB radiation/sunlight exposure on the toxicity of dispersed crude oil to mesozooplankton, and (4) the role of marine protozoans on the sublethal effects of crude oil and in the bioaccumulation of PAHs in the copepod Acartia tonsa. Mortality of mesozooplankton increased with increasing oil concentration following a sigmoid model with a median lethal concentration of 32.4 µl L−1 in 16 h. At the ratio of dispersant to oil commonly used in the treatment of oil spills (i.e. 1∶20), dispersant (0.25 µl L−1) and dispersant- treated oil were 2.3 and 3.4 times more toxic, respectively, than crude oil alone (5 µl L−1) to mesozooplankton. UVB radiation increased the lethal effects of dispersed crude oil in mesozooplankton communities by 35%. We observed selective bioaccumulation of five PAHs, fluoranthene, phenanthrene, pyrene, chrysene and benzo[b]fluoranthene in both mesozooplankton communities and in the copepod A. tonsa. The presence of the protozoan Oxyrrhis marina reduced sublethal effects of oil on A. tonsa and was related to lower accumulations of PAHs in tissues and fecal pellets, suggesting that protozoa may be important in mitigating the harmful effects of crude oil exposure in copepods and the transfer of PAHs to higher trophic levels. Overall, our results indicate that the negative impact of oil spills on mesozooplankton may be increased by the use of chemical dispersant and UV radiation, but attenuated by crude oil-microbial food webs interactions, and that both mesozooplankton and protozoans may play an important role in fate of PAHs in marine environments.

Highlights

  • Zooplankton play a key role in marine food web dynamics, biogeochemical cycling and fish recruitment [1,2,3]

  • Stations C6 and NC had a high diversity of copepod species, whereas at station MRM the copepod community was mainly dominated by the calanoid copepod Acartia tonsa and the cyclopoid copepod Oithona spp (Table 1)

  • The reported crude oil concentrations following the Deepwater Horizon Oil spill ranged from 0.25 parts per billion to 0.22 ppm in coastal and estuaries areas [65], between 1–2 ppm in oil plumes at 1 km depth [66] and from 3.1 to 4500 ppm on Florida beaches [67]

Read more

Summary

Introduction

Zooplankton play a key role in marine food web dynamics, biogeochemical cycling and fish recruitment [1,2,3]. Despite their importance in marine environments, our knowledge of the interactions between zooplankton and anthropogenic pollutants is very limited. There are three main types of interactions between zooplankton and pollutants. Zooplankton may play an important role in the biomagnification of pollutants up food webs [4,7]. Understanding the interactions between pollutants and zooplankton is crucial for our understanding of the fate of pollution in the pelagic zone and their impact on marine environments

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call