Abstract

Interactions between magnetic and vortex rings are studied over a wide interval of interaction parameter values ranging from negligible magnetic effects on vorticity structure, to very strong effects. The employed interaction parameter measures the strength of the Lorentz force in units of the inertial force. At small interaction parameters, the vortex ring shapes part of the magnetic ring into a dissipative, curved, magnetic sheet structure. At high interaction parameters, the Lorentz force acts as an agent of proliferation of vortex rings, since it generates two vortex rings adjacent to the original magnetic structure, one of which is pulled (together with the advected magnetic field) into the wake of the original vortex ring, while the other escapes, ready to interact with another magnetic ring. Once within the initial vortex ring wake, both magnetic and vorticity structures are stretched into spirals, whilst the Lorentz force continuously generates new, intense vorticity at high magnetic field sites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.