Abstract

Variable frequency microwave (VFM) has been recently proposed as an alternative underfill curing method that provides flip chip package warpage improvement as well as potential underfill cure time reductions. The current paper outlines how such advantages in VFM processing of underfill can be compromised when applied to high performance organic packages. VFM recipes for three underfill materials were developed by performing several VFM curing runs followed by curing rate measurements using the differential scanning calorimetry method. The VFM curing rate was seen to strongly dependent upon the underfill chemistry. By testing flip chip parts that comprised large and high-end substrates, we showed that the underfill material has negligible impact on VFM warpage with the major cause attributed to the coefficient of thermal expansion mismatch between the die and the substrate. Comparison between the convection and the VFM methods indicated two warpage tendencies that depended upon the VFM curing temperature. First, when both curing methods used comparably high temperatures, warpage increases up to about + 20% were found with VFM. This unexpected result was explained by the high-density Cu loading of the substrate which systematically carried heat generated by VFM energy from the die/underfill system to the substrate. Since this high-end substrate consists of sequential dielectric/Cu layers with asymmetric distribution of Cu, additional stresses due to local CTE mismatches between the Cu and the dielectric layers were induced within the substrate processed with VFM. Second, warpage reductions down to about − 22% were obtained at the VFM curing temperature of 110°C with a curing time similar to that of convection cure. This suggests that the negative effect of the local CTE mismatches were no longer at play at the lower VFM temperatures and that the significantly lower final cure temperatures produced lower total shrinkage of the die and the substrate. Finally, due to lower elastic moduli, the cured VFM parts showed better mechanical reliability with no fails up to 1500 cycles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.