Abstract

The majority of prohormones are cleaved at paired basic residues to generate bioactive hormones by prohormone convertases (PCs). As PC1 and PC2, two neuroendocrine-specific PCs, appear to be the key enzymes capable of processing a variety of prohormones, alterations of PC2 and/or PC1 levels will probably have a profound effect on hormonal homeostasis. We investigated the regulation of PC2 messenger RNA (mRNA) by thyroid hormone using GH3 cells to demonstrate that T3 negatively regulated PC2 mRNA levels in a dose- and time-dependent fashion. Functional analysis of progressive 5'-deletions of the human (h) PC2 promoter luciferase constructs in GH3 cells demonstrated that the regulation probably occurs at the transcriptional level, and that putative negative thyroid hormone response elements were located within the region from -44 to + 137 bp relative to the transcriptional start site. Transient transfections in JEG-3 cells and COS-1 cells showed that the suppressive effect of T3 was equally mediated by the thyroid hormone receptor (TR) isoforms TRalpha1 and TRbeta1. Electrophoretic mobility shift assays using purified TRal and retinoid X receptor-beta protein as well as GH3 nuclear extracts showed that regions from +51 to +71 bp and from +118 to +137 bp of the hPC2 promoter bind to TRalpha1 as both a monomer and a homodimer and with TRalpha1/retinoid X receptor-beta as a heterodimer. Finally, the in vivo regulation of pituitary PC2 mRNA by thyroid status was demonstrated in rats. These results demonstrate that T3 negatively regulates PC2 expression at the transcriptional level and that functional negative thyroid hormone response elements exist in the hPC2 promoter. We postulate that the alterations of PC2 activity may mediate some of the pathophysiological consequences of hypo- or hyperthyroidism.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call