Abstract

The transition to electric vehicles is an important strategy for reducing greenhouse gas emissions from passenger cars. Modelling future pathways helps identify critical drivers and uncertainties. Global integrated assessment models (IAMs) have been used extensively to analyse climate mitigation policy. IAMs emphasise technological change processes but are largely silent on important social and behavioural dimensions to future technological transitions. Here, we develop a novel conceptual framing and empirical evidence base on social learning processes relevant for vehicle adoption. We then implement this formulation of social learning in IMAGE, a widely-used global IAM. We apply this new modelling approach to analyse how technological learning and social learning interact to influence electric vehicle transition dynamics. We find that technological learning and social learning processes can be mutually reinforcing. Increased electric vehicle market shares can induce technological learning which reduces technology costs while social learning stimulates diffusion from early adopters to more risk-averse adopter groups. In this way, both types of learning process interact to stimulate each other. In the absence of social learning, however, the perceived risks of electric vehicle adoption among later-adopting groups remains prohibitively high. In the absence of technological learning, electric vehicles remain relatively expensive and therefore is only an attractive choice for early adopters. This first-of-its-kind model formulation of both social and technological learning is a significant contribution to improving the behavioural realism of global IAMs. Applying this new modelling approach emphasises the importance of market heterogeneity, real-world consumer decision-making, and social dynamics as well as technology parameters, to understand climate mitigation potentials.

Highlights

  • Accepted Manuscript is “the version of the article accepted for publication including all changes made as a result of the peer review process, and which may include the addition to the article by IOP Publishing of a header, an article ID, a cover sheet and/or an ‘Accepted

  • We demonstrate how heterogeneous consumer preferences and social learning can be represented in a realistic yet tractable model formulation that fits the scope of a global integrated assessment models (IAMs)

  • IAMs show that technology plays a crucial role in reducing greenhouse gas emissions across regions and sectors (Krey, Luderer et al 2014, Kriegler, Weyant et al 2014) and in determining the cost and feasibility of meeting specified climate targets (Bosetti, Marangoni et al 2015)

Read more

Summary

Introduction

Accepted Manuscript is “the version of the article accepted for publication including all changes made as a result of the peer review process, and which may include the addition to the article by IOP Publishing of a header, an article ID, a cover sheet and/or an ‘Accepted.

Objectives
Methods
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.