Abstract

As one of the important ruminants of the Qinghai-Tibet Plateau, Tibetan sheep are able to reproduce and maintain their population in this harsh environment of extreme cold and low oxygen. However, the adaptive mechanism of Tibetan sheep when nutrients are scarce in the cold season of the Plateau environment is unclear. We conducted comparative analysis rumen fermentation parameters, rumen microbes, and expression of host genes related to nutrient absorption and rumen epithelial barrier function in cold and warm season Tibetan sheep. We found that concentrations of the volatile fatty acids (VFAs) acetate, propionate and butyrate of Tibetan sheep in the cold season were significantly higher than in the warm season (P < 0.05). Microbial 16S rRNA gene analysis revealed significant differences in rumen microbiota between the cold and warm seasons, and the abundance of microbial in the cold season was significantly higher than that in the warm season (P < 0.05), and the lack of nutrients in the cold season led to a significant reduction in the expression of SGLT1, Claudin-4, and ZO-1 genes in the rumen epithelium. Correlation analysis revealed significant associations of some rumen microorganisms with the fermentation product acetate and the rumen epithelial genes SGLT1, Claudin-4, and ZO-1.

Highlights

  • The concentration of some volatile fatty acids (VFAs) were significantly higher in the cold season (December) than in the warm season (July) (P < 0.05)

  • Tibetan sheep are a ruminant of the Qinghai-Tibet Plateau and can survive in the harsh environment and maintain their population through reproduction, which has a certain relationship with the host genome (Wei et al, 2016)

  • The total VFA in the cold season was significantly higher than that in the warm season (P < 0.05), which may be caused by Tibetan sheep showing high VFA in order to adapt to the nutrient deficiency in the cold season and provide energy source for the body

Read more

Summary

Introduction

There is a strong symbiotic relationship between animal gut microbiota and the host, which helps the host digest and assimilate food, and thereby provides energy and nutrition to the host. The rumen epithelium is a unique location for host-microorganism interactions, and these interactions can affect the net use of nutrients by the host (Holmes et al, 2012; Malmuthuge and Guan, 2017). The availability of food, nutrient intake patterns of animals, and geographical resources change with time and season. Different food sources or geographical environments have significant effects on microbial composition in the host gut (Amato et al, 2015; Sun et al, 2016)

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call