Abstract

The interactions between reactive oxygen species (ROS), ethylene (ETH) and polyamines (PAs) in leaves of Glycyrrhiza inflata seedlings under root osmotic stress are reported. The results showed that the interactions between ROS, ETH and PAs were quite diverse at different degrees of damage. In slightly damaged leaves, the inhibition of ETH synthesis had no significant influence on ROS production and the content of putrescine (Put), spermidine (Spd) and spermine (Spm); the inhibition of Put synthesis had no significant influence on the production of ROS and ETH. However, in seriously damaged leaves, the inhibition of ETH production alleviated the increase in ROS production and the decrease in the content of Put, Spd and Spm; the reduction in polyamine content promoted the increase in the production of ROS and ETH; furthermore, exogenous H2O2 accelerated the increase in ETH production and the decrease in the content of these amines. Thus, it can be concluded that there is a close relationship between ROS content and the levels of ETH and PAs in the seriously damaged leaves. ROS production was modulated by the inhibition in ETH production and the reduction in polyamine content. Conversely, ROS promoted ETH production and reduced the polyamine content.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.