Abstract

Classical metapopulation models do not account for temporal changes in the suitability of habitat patches. In reality, however, the carrying capacity of most habitat types is not constant in time due to natural succession processes. In this study, we modeled plant metapopulation persistence in a successional landscape with disappearing and emerging habitat patches, based on a realistic dune slack landscape at the Belgian–French coast. We focused on the effects of the variation of different plant traits on metapopulation persistence in this changing landscape. Therefore, we used a stage based stochastic metapopulation model implemented in RAMAS/Metapop, simulating a large variation in plant traits but keeping landscape characteristics such as patch turnover rate and patch lifespan constant. The results confirm the conclusions of earlier modeling work that seed dispersal distance and seed emigration rate both have an important effect on metapopulation persistence. We also found that high population growth rate or high recruitment considerably decreased the extinction risk of the metapopulation. Additionally, a long plant life span had a strong positive effect on metapopulation persistence, irrespective of the plant's dispersal capacity and population growth rate. Plant species that invest in life span require less investment in offspring and dispersal capacity to avoid extinction, even in dynamic landscapes with deterministic changes in habitat quality. Moreover, metapopulations of long-lived plant species were found to be much less sensitive to high levels of environmental stochasticity than short-lived species.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.