Abstract

Molecular-dynamics simulations were performed for two opposing flat surfaces sparsely grafted with rigid polyelectrolyte chains whose lengths are smaller than their persistence lengths. The resulting force-distance dependence was analyzed theoretically in terms of two separate physical mechanisms: the pressure arising from osmotically active counterions trapped within the brush and the work required to bend the brush chains under confinement, which can be accurately characterized by a ground-state theory of rigid polymer buckling. These contributions are of the same magnitude and should be distinguishable in experiments of double-stranded DNA brushes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.