Abstract

In this paper we develop a theoretical framework for investigating pattern formation in biological systems for which the tissue on which the spatial pattern resides is growing at a rate which is itself regulated by the diffusible chemicals that establish the spatial pattern. We present numerical simulations for two cases of interest, namely exponential domain growth and chemically controlled growth. Our analysis reveals that for domains undergoing rapid exponential growth dilution effects associated with domain growth influence both the spatial patterns that emerge and the concentration of chemicals present in the domain. In the latter case, there is complex interplay between the effects of the chemicals on the domain size and the influence of the domain size on the formation of patterns. The nature of these interactions is revealed by a weakly nonlinear analysis of the full system. This yields a pair of nonlinear equations for the amplitude of the spatial pattern and the domain size. The domain is found to grow (or shrink) at a rate that depends quadratically on the pattern amplitude, the particular functional forms used to model the local tissue growth rate and the kinetics of the two diffusible species dictating the resulting behaviour.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.