Abstract

An operant food-related conditioned reflex was developed in six cats by the "active choice" protocol: short-latency pedal presses were followed by presentation of low-quality reinforcement (bread-meat mix), while long-latency pedal presses were followed by presentation of high-quality reinforcement (meat). Animals differed in terms of their food-procuring strategies, displaying "self-control," "ambivalence," or "impulsivity." Multineuron activity was recorded from the frontal cortex and hippocampus (field CA3). Cross-correlation analysis of interneuronal interactions within (local networks) and between (distributed networks) study structures showed that the numbers of interneuronal interactions in both local and distributed networks were maximal in animals with "self-control." On the background of systemic administration of the muscarinic cholinoreceptor blockers scopolamine and trihexyphenidyl, the numbers of interneuronal interactions decreased, while "common source" influences increased. This correlated with impairment of the reproduction of the selected strategy, primarily affecting the animals' self-controlled behavior. These results show that the "self-control" strategy is determined by the organization of local and distributed networks in the frontal cortex and hippocampus.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call