Abstract

Using an in vivo microdialysis method, we measured the release of histamine in the anterior hypothalamic area (AHy) of rats under several concentrations of halothane anesthesia (1, 0.5, and 0.2%). The release of histamine increased to 341 and 325% at halothane concentrations of 0.5 and 0.2%, compared with the basal level at anesthesia induced by 1% halothane. alpha-Fluoromethylhistidine (100 mg/kg i.v.), a specific and irreversible inhibitor of histidine decarboxylase, reduced the histamine release to <35% of the basal value at 1% halothane anesthesia in the AHy, and also decreased the anesthetic requirement for halothane, evaluated as the minimum alveolar concentration (MAC), by 26%. Furthermore, pyrilamine (20 mg/kg i.v.), a brain-penetrating H1 antagonist, and zolantidine (20 mg/kg i.v.), a brain-penetrating H2 antagonist, reduced the MAC for halothane by 28.5 and 16%, respectively. Although thioperamide (5 mg/kg i.v.), an antagonist of presynaptic H3 autoreceptor, induced an approximate twofold increase in the level of histamine release in conscious freely moving rats, the same dose of thioperamide had little effect on the release of histamine under 1% halothane anesthesia in the AHy. Furthermore, thioperamide did not change the anesthetic requirement (MAC) for halothane. The present findings indicate that halothane anesthesia inhibits the release of neuronal histamine and that histaminergic neuron activities change the anesthetic requirement (MAC) for halothane through H1 as well as H2 receptors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.