Abstract
Nano-biochar (nanoBC), produced from biochar aging, exhibits significant molecular heterogeneity that may affect the fate and toxicity of co-occurring pollutants. However, the interaction between nanoBC and arsenic (As) remains unclear. Herein, we simulated biochar aging through water erosion, photoaging, and thermal chemical decomposition to generate three types of nanoBC (nUBC, nPBC, and nHBC). We then investigated their distinct binding affinities and interaction mechanisms with arsenite (AsIII) and arsenate (AsV). Complementary analysis using optical spectrophotometer and high-resolution mass spectrometry revealed significant differences in properties and chemical compositions among the three nanoBCs at a size of 100 nm. Specifically, nHBC had higher yield, nPBC had higher aromaticity, and nUBC had more intricate molecular compositions and larger molecular weights. Binding experiments showed that nHBC and nUBC exhibited the highest conditional distribution coefficient (KD) for AsIII and AsV, respectively. In nHBC, a higher proportion of humic-like fluorescent component C3 enhanced its affinity for AsIII, attributed to lignin-like molecules with CHONS formulas where thiol acted as active binding sites. In contrast, the robust AsV binding capacity of nUBC stemmed from its richness in humic-like fluorescent component C1 and tryptophan-like fluorescent component C2. This is facilitated by lipid-like molecules and CHO formulas in C1 and aliphatic/peptide-like molecules and CHON formulas in C2, which provided oxygenic and nitrogen-containing groups for binding. All nanoBC had a significantly higher binding affinity for As than bulk BC. These findings provide a deeper understanding of As-nanoBC binding mechanisms at the molecular level, facilitating more accurate prediction of As fate in biochar-amended soil and associated ecosystem risks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.