Abstract

A taxonomically diverse suite of fungi interacts with bryophytes as pathogens, parasites, saprobes, and commensals. Necrotrophic pathogens such as Tephrocybe palustris (Peck) Donk and Nectria mnii Döbbeler form patches of moribund gametophytes in otherwise healthy mats of mosses. These pathogens exhibit different methods of host cell disruption; N. mnii appears to displace the host cell protoplast with intracellular hyphae, while T. palustris causes host protoplast degeneration. Host responses to infection by bryopathogens are also variable. Host–pathogen relationships can be highly evolved, as in Bryophytomyces sphagni (Navashin) Cif., in which fungal propagules replace the bryophyte spores, and exploit the explosive dispersal mechanisms of the Sphagnum host. Bryophilous parasites tend to exhibit high tissue or cellular specificity with varying host specificity. For example, Octospora similis (Kirchstein) Benkert infects the rhizoids of species of Bryum, and Discinella schimperi (Navashin) Redhead specifically colonizes the mucilage producing cells of stems of Sphagnum squarrosum Crome. Eocronartium muscicola (Pers.) Fitzp. demonstrates a highly evolved host–parasite relationship in which the basidiocarp displaces the sporophyte and is fed directly by the gametophyte through specialized transfer tissues. Fungi such as Oidiodendron maius Barron are capable of decomposing moss cell walls that are generally resistant to decomposition because of their polyphenolic component. Mycorrhizal fungi, including Glomus, Suillus, and Endogone, have not been observed to form functional, nutrient-exchanging mycorrhizal interfaces with bryophytes, rather, they function as saprobes on moribund and senescent gametophytes. Finally, endophytic fungi may provide bryophyte hosts with greater tolerance to extreme pH or promote vegetative growth. In vivo observation of bryophyte–fungus interactions has provided insight into the types of interactions that occur; however to further understand the physiology, anatomy, and etiology of these interactions, it is necessary to culture bryophilous fungi in vitro and create artificial axenic systems for study.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.