Abstract

The quantification and effects of system pH value on the interactions between Pb(II) and the biopolymer in activated sludge were investigated. The biopolymer had two protein-like fluorescence peaks (Ex/Em = 280 nm/326–338 nm for peak A; Ex/Em = 220–230 nm/324–338 nm for peak B). The fluorescence intensities of peak B were higher than those of peak A. The fluorophores of both peaks could be largely quenched by Pb(II), and the quencher dose for peak B was about half of that for peak A. The modified Stern-Volmer equation well depicted the fluorescence quenching titration. The quenching constant (Ka) values for both peaks decreased with rising system pH value, and then sharply decreased under alkaline conditions. It could be attributed to that the alkaline conditions caused the reduction of available Pb(II) due to the occurrence of Pb(OH)2 sediments. The Ka values of peak B were bigger than those for peak A at the same system pH values. Accordingly, the aromatic proteins (peak B) played a key role in the interactions between metal ions and the biopolymer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.