Abstract

Understanding the behavior of terrestrially derived dissolved organic carbon (DOC) through subterranean estuaries (STEs) is essential for determining the carbon budget in coastal waters. However, few studies exist on the interaction of organic carbon (OC) and iron (Fe) in these dynamic systems, where fresh groundwater mixes with recirculated seawater. Here, we focused on the origin and behavior of DOC, and we quantified the relative proportion of OC trapped by reactive Fe-hydroxides along a sandy beach STE. The δ13C-DOC signal in beach groundwater seems to respond rapidly to OC inputs. Our results show a terrestrial imprint from the aquifer matrix dominated by the degradation of particulate organic carbon (POC) issue from an old soil horizon composed of terrestrial plant detritus (14C dating ~800 to 700 years B.P) which is buried below the Holocene sand. Even though the system can be sporadically affected by massive inputs of marine OC, this transient marine imprint seems to be rapidly evacuated from the STE. As reported in soil and in marine mud, Fe–OC trapping occurs in the sandy sediment of the STE. At the groundwater–seawater interface, newly precipitated reactive Fe-hydroxides interact with and trap terrestrial OC independently of the DOC origin in beach groundwater. The molecular fractionation of DOC along the STE and preferential trapping of terrestrial compounds favor the in situ degradation and/or export of non-Fe-stabilized marine-derived molecules to coastal waters. These findings support the idea that the sandy beach STE acts as a transient sink for terrestrial OC at the land–sea interface and contributes to the regulation of marine vs. terrestrial carbon exports to coastal waters.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call