Abstract

As highly organized consortia of bacteria, biofilms have long been implicated in aggravating inflammation. However, our understanding regarding invivo host-biofilm interactions in the complex tissue environments remains limited. Here, we show a unique pattern of crypt occupation by mucus-associated biofilms during the early stage of colitis, which is genetically dependent on bacterial biofilm-forming capacity and restricted by host epithelial α1,2-fucosylation. α1,2-Fucosylation deficiency leads to markedly augmented crypt occupation by biofilms originated from pathogenic Salmonella Typhimurium or indigenous Escherichia coli, resulting in exacerbated intestinal inflammation. Mechanistically, α1,2-fucosylation-mediated restriction of biofilms relies on interactions between bacteria and liberated fucose from biofilm-occupied mucus. Fucose represses biofilm formation and biofilm-related genes invitro and invivo. Finally, fucose administration ameliorates experimental colitis, suggesting therapeutic potential of fucose for biofilm-related disorders. This work illustrates host-biofilm interactions during gut inflammation and identifies fucosylation as a physiological strategy for restraining biofilm formation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.