Abstract

Wetlands between, and within, dune-beach complexes along the south shore of Lake Michigan are strongly affected by ground water. The hydrogeology of the glacial drift aquifer system in a 26 km 2 area was investigated to determine the effects of ground water on the hydrology and hydrochemistry of Cowles Bog and its adjacent wetlands. The investigation showed that ground water from intermediate- and regional-scale flow systems discharges to Cowles Bog from confined aquifers that underlie the wetland. These flow systems are recharged in moraines south of the dune-beach complexes. Water from the confined aquifers discharges into the surficial aquifer mainly by upward leakage through a buried till sheet that serves as the confining layer. However, the till sheet is breached below a raised peat mound in Cowles Bog, allowing direct upward discharge from the confinef aquifer into the surficial sand, marl, and peat. The shallow ground and wetland water in the area influenced by this leakage is a calcium magnesium bicarbonate type, with low tritium concentrations consistent with mixing of older ground water and more recent precipitation. Ground water and wetland water from surrounding areas are less mineralized and have higher tritium concentrations characteristic of precipitation in the late 1970s. The results of this study suggest that wetlands in complex hydrogeologic settings may be influenced by multiple ground-water flow systems that are affected by geomorphic features, stratigraphic discontinuities, and changes in sediment types. Discharge and recharge zones may both occur in the same wetland. Multidisciplinary studies incorporating hydrological, hydrochemical, geophysical, and sedimentological data are necessary to identify such complexities in wetland hydrology.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.