Abstract

The Wnt signaling pathway is one of the most ancient and pivotal signaling cascades, governing diverse processes in development and cancer regulation. Within the realm of cancer treatment, genistein emerges as a promising candidate due to its multifaceted modulation of various signaling pathways, including the Wnt pathway. Despite promising preclinical studies, the precise mechanisms underlying genistein's therapeutic effects via Wnt modulation remain elusive. In this study, we unveil novel insights into the therapeutic mechanisms of genistein by elucidating its inhibitory effects on Wnt signaling through macropinocytosis. Additionally, we demonstrate its capability to curtail cell growth, proliferation, and lysosomal activity in the SW480 colon adenocarcinoma cell model. Furthermore, our investigation extends to the embryonic context, where genistein influences gene regulatory networks governed by endogenous Wnt pathways. Our findings shed light on the intricate interplay between genistein, Wnt signaling, membrane trafficking, and gene regulation, paving the way for further exploration of genistein's therapeutic potential in cancer treatment strategies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call