Abstract

The paper reports on studies of the Preobrazhensky gabbro‐granitoid intrusion, East Kazakhstan, com‐ posed of the rocks that belong to four phases of intrusion, from quartz monzonites and gabbroids to granite‐ leucogranites. Specific relationships between basite and granitoid rocks are usually classified as the result of interac‐ tions and mixing of liquid magmas, i.e. magma mingling and mixing. Basite rocks are represented by a series from biotite gabbros to monzodiorites. Granitoids rocks are biotite‐amphibole granites. Porphyric granosyenites, com‐ bining the features of both granites and monzodiorites, are also involved in mingling. It is established that the primary granitoid magmas contained granosyenite/quartz‐monzonite and occurred in the lower‐medium‐crust conditions in equilibrium with the garnet‐rich restite enriched with plagioclase. Monzodiorites formed during fractionation of the parent gabbroid magma that originated from the enriched mantle source. We propose a magma interaction model describing penetration of the basite magma into the lower horizons of the granitoid source, which ceased below the viscoplastic horizon of granitoids. The initial interaction assumes the thermal effect of basites on the almost crystal‐ lized granitic magma and saturation of the boundary horizons of the basite magma with volatile elements, which can change the composition of the crystallizing melt from gabbroid to monzodiorite. A ‘boundary’ layer of monzodiorite melt is formed at the boundary of the gabbroid and granitoid magmas, and interacts with granitoids. Due to chemical interactions, hybrid rocks – porphyric granosyenites – are formed. The heterogeneous mixture of monzodiorites and granosyenites is more mobile in comparison with the overlying almost crystallized granites. Due to contraction frac‐ turing in the crystallized granites, the heterogeneous mixture of monzodiorites and granosyenites penetrate into the upper rock levels. Examples of the magma interaction causing the formation of mingling structures at the middle and upper crust levels can be viewed as indicative of ‘fast’, active processes of the mantle‐crust interaction, when the mantle magmas actively drain the lithosphere and melt the substance of the lower‐middle crust. An important role is played by the temperature gradient in the sublithospheric mantle. It directly affects the degree of its melting and the volumes of basite magmas. Nonetheless, the permeability of the lithosphere is also important – the above‐described scenario is possible if the lithosphere is either thin or easily permeable due to the development of strike‐slip and extension fractures. In the Late Paleozoic, the territory of East Kazakhstan was part of the Altai collision system of hercinides. The late stages of its evolution (300–280 Ma) were accompanied by large‐scale mantle and crustal magma‐ tism corresponding to the formation of the Late Palaeozoic large igneous province related to the activity of the Tarim mantle plume. The influence of the mantle plume on the lithospheric mantle led to an increase in the temperature gradient, and the lithosphere weakened by shear movements of the collapsing orogenic structure was permeable to mantle magmas, which caused the processes of mantle‐crustal interaction.

Highlights

  • Scenario is possible if the lithosphere is either thin or permeable due to the development of strike‐slip and extension fractures

  • The late stages of its evolution (300–280 Ma) were accompanied by large‐scale mantle and crustal magma‐ tism corresponding to the formation of the Late Palaeozoic large igneous province related to the activity of the Tarim mantle plume

  • The influence of the mantle plume on the lithospheric mantle led to an increase in the temperature gradient, and the lithosphere weakened by shear movements of the collapsing orogenic structure was permeable to mantle magmas, which caused the processes of mantle‐crustal interaction

Read more

Summary

ВВЕДЕНИЕ

Процессы мантийно‐корового взаимодействия играют существенную роль в преобразовании ли‐ тосферы, формировании и эволюции континен‐ тальной коры, определяют закономерности раз‐ мещения и специфику месторождений полезных ископаемых. Исследование процессов мантийно‐ корового взаимодействия особенно актуально в пределах аккреционно‐коллизионных складчатых поясов, где разнообразие геодинамических обста‐ новок и магмообразующих субстратов, наблюдаю‐ щееся как для мантийных, так и для коровых магм, может приводить к совмещению различных меха‐ низмов такого взаимодействия. Одним из прямых индикаторов процессов мантийно‐корового взаи‐ модействия являются габбро‐гранитоидные ин‐ трузивы, имеющие обычно сложное многофазное строение. В последние десятилетия установлено, что их формирование связывается с воздействием базитовых магм мантийной природы на коровые субстраты, а разнообразие пород в значительной степени определяется процессами дифференциа‐ ции первичных магм, их контаминации и смешения с вновь образованными выплавками из коровых субстратов [Huppert, Sparks, 1988; Litvinovsky et al, 1992; Sklyarov, Fedorovskii, 2006; Konopelko et al, 2011; Li et al, 2012]. Главным индикатором процес‐ са мантийно‐корового взаимодействия в таких ин‐ трузиях являются случаи прямого сосуществова‐ ния контрастных по составу базитовых и кремне‐ кислых магм. Одним из примеров описанных про‐ цессов является Преображенский габбро‐гранито‐ идный массив (Восточный Казахстан)

ГЕОЛОГИЧЕСКОЕ СТРОЕНИЕ ПРЕОБРАЖЕНСКОГО
МЕТОДИКА ИССЛЕДОВАНИЙ
ПЕТРОГРАФИЯ И МИНЕРАЛОГИЯ МИНЕРАЛОВ
ВЕЩЕСТВЕННЫЙ СОСТАВ
16 Х-1100
ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ
ЗАКЛЮЧЕНИЕ
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call