Abstract
Immigration and colonization of isolates of naturally occurring stream bacteria and hyphomycetes on beech leaves were studied in a laboratory stream microcosm. Fungal spores were more successful immigrants, especially on new leaves, than bacteria, which were more repelled than attracted by the substrate. Fewer bacteria immigrated to older leaves than to new, and bacteria multiplied faster in water than on leaves. Fungi and bacteria showed synergistic relationships so that each group grew significantly faster in presence of the other group. If one considers, differences in immigration, colonization and synergism patterns, fungal mycelia doubled about 10 times faster than bacterial cells which might explain the dominance of fungi usually found on leaves in early decay. The individual fungal species could be assigned to one of three colonization groups; one of fugitive species, preceding a second group of species that grew from rarity to dominance, and a third group of very slow colonizers. The leachate was fractionated in different molecular size classes by gel chromatography, and the fraction around 2500D in the new leaf leachate was associated with a high concentration of polyphenols. High-pressure liquid chromatography (HPLC) and gas chromatography-mass spectrometry (GC-MS) revealed the presence of 16 phenolic acids in the new leaf leachate at concentrations ranging from < 1 to 640 μg l-1. All fungi except the species with the slowest growth rate grew faster on leachate with the fraction around 2500D removed, and the density of bacteria was significantly reduced when pure stream water was supplemented with compounds from the same fraction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.