Abstract

Collisions between replication forks and topoisomerase-drug-DNA ternary complexes result in the inhibition of DNA replication and the conversion of the normally reversible ternary complex to a nonreversible form. Ultimately, this can lead to the double strand break formation and subsequent cell death. To understand the molecular mechanisms of replication fork arrest by the ternary complexes, we have investigated molecular events during collisions between DNA helicases and topoisomerase-DNA complexes. A strand displacement assay was employed to assess the effect of topoisomerase IV (Topo IV)-norfloxacin-DNA ternary complexes on the DnaB, T7 gene 4 protein, SV40 T-antigen, and UvrD DNA helicases. The ternary complexes inhibited the strand displacement activities of these DNA helicases. Unlike replication fork arrest, however, this general inhibition of DNA helicases by Topo IV-norfloxacin-DNA ternary complexes did not require the cleavage and reunion activity of Topo IV. We also examined the reversibility of the ternary complexes after collisions with these DNA helicases. UvrD converted the ternary complex to a nonreversible form, whereas DnaB, T7 gene 4 protein, and SV40 T-antigen did not. These results suggest that the inhibition of DnaB translocation may be sufficient to arrest the replication fork progression but it is not sufficient to generate cytotoxic DNA lesion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.