Abstract

With large-scale molecular dynamics simulations, we investigate systematically the interaction of displacement cascades with a set of Σ3〈110〉 tilt grain boundaries (GBs) in Cu bicrystals at low ambient temperatures, as regards irradiation-induced defect production/absorption and GB migration/faceting. Except for coherent twin boundary, GBs exhibit pronounced preferential absorption of interstitials, which depends on initial primary knock-on atom distance from GB plane and inclination angle. GB migration occurs when displacement cascades overlap with a GB plane, as induced by recrystallization of thermal spike, and concurrent asymmetric grain growth. Faceting occurs via expanding coherent twin boundaries for asymmetric GBs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call