Abstract

Abstract Soft robots have recently attracted much interest, and dielectric elastomers have shown great promise for soft actuators because of their large voltage-induced deformation. The actuation performance is primarily characterized by the largest deformation, based on the material failure analyses. However, most previous related work usually neglected the fact that, different from their counterpart in the field of traditional rigid robots, soft actuators are deeply coupled with the environment. Interactions between soft actuators and the environment are significant and under-researched, playing an important role in evaluating their actuation capabilities and in matching them with prescribed soft robotic systems. This article investigates the interactions between a dielectric elastomer balloon actuator and an actuated soft body. We present a computational model of the coupled system and look at the effects of mechanical and material designs on the performance of the balloon actuator. Parametric studies ...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.