Abstract
The interactions between crown ethers and water, methanol, acetone, and acetonitrile molecules in halogenated solvents are studied by means of calorimetric measurements. The results reveal the formation of 1:1 complexes between crown ethers and water in chloroform. The hydrogen bonding and ion–dipole interactions are responsible for the complex formation between the water molecules and crown ethers. For a better understanding of the influence of chloroform upon the complexation between crown ethers and water, chloroform is replaced by dichloromethane, 1,2-dichloroethane, and carbon tetrachloride. Since the hydrogen bonds are responsible for the complex formation between crown ethers and water in the halogenated solvents, further investigations are performed with methanol, acetone and acetonitrile. The interactions, the ligand nature, the concentrations of polar solvents, and the nature of nonpolar solvents involved in complexation are analyzed and discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.