Abstract

We present a density functional theory study of interactions between spherical colloidal particles in amphiphile solutions. Theory is found to be in good agreement with previously published molecular dynamics simulations. It is used to analyze the effect of the amphiphile solution bulk density, the chain length, and the solvent mole fraction on the potential of mean force between the particles. The general features of the potential of mean force are rationalized in terms of formation of layers and bilayers of amphiphilic molecules in the intercolloidal gap. Theory yields the same general trends as observed in simulations and in experiments. In particular, the computed mean force changes its character from repulsive to attractive and back to repulsive as the solvent mole fraction is gradually increased.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.