Abstract

To enhance biohydrogen production, Clostridium beijerinckii was co-cultured with Geobacter metallireducens in the presence of the reduced extracellular electron shuttle anthrahydroquinone-2, 6-disulfonate (AH(2)QDS). In the co-culture system, increases of up to 52.3% for maximum cumulative hydrogen production, 38.4% for specific hydrogen production rate, 15.4% for substrate utilization rate, 39.0% for substrate utilization extent, and 34.8% for hydrogen molar yield in co-culture fermentation were observed compared to a pure culture of C. beijerinckii without AH(2)QDS. G. metallireducens grew in the co-culture system, resulting in a decrease in acetate concentration under co-culture conditions and a presumed regeneration of AH(2)QDS from AQDS. These co-culture results demonstrate metabolic crosstalk between the fermentative bacterium C. beijerinckii and the respiratory bacterium G. metallireducens and suggest a strategy for industrial biohydrogen production.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.