Abstract

Aim of study: This paper provides an analysis of growth and survival of twenty–year–old Scots pine saplings in relation to canopy cover density (CCD) gradients, from dense (D–CCD), sparse (S–CCD), and gap (G–CCD) situations.Area of study: Aladag (Bolu) in northern Turkey.Material and methods: Sparse canopy cover density (S–CCD), dense canopy cover density (D–CCD) and gap canopy (G–CCD) were chosen within ten different strip sample plots (10 × 50 m) with sapling regeneration cores. Those regeneration cores were divided into two portions (individuals at the edge and middle of the regeneration cores) and from each portion three individuals was were obtained from a sample. The growth relationships of individual saplings were calculated with stem analyses. Honowski Light Factor (HLF) (ratio of Terminal sprout length (T) to Lateral sprout length (L)) was used to present growth potential measure of seedlings.Main results: The largest sapling regeneration cores were found in the G–CCD followed by S–CCD, and finally D–CCD, all tested for significance with Kruskal–Wallis Test. Compared with saplings in the middle of regeneration cores (crop saplings), those at the edge were always reduced in terms of mean height. Significant difference was only found between the ‘Main Crop’ and the ‘Edge 1’ of the regeneration cores for G–CCD suggesting that sapling regeneration cores are more typical under G–CCD conditions. HLF ratios were greater than 1 with high growth potentials for both CCD gradients (G–CCD and S–CCD) and there were no significant variations between G–CCD and S–CCD for main crop and edges. The thinning after 12–14 years increased sapling growth. However, under D–CCD, growth had virtually ceased.Research highlights: Naturally occurring Scots pine saplings are suppressed by a dense canopy. However, they are tolerant of shade to the extent that they can survive over relatively long time–periods (10–12 years) and can exploit subsequent opportunities should a canopy gap occur.Keywords: Gap regeneration; sapling growth; light regime; canopy cover density; irregular silviculture.

Highlights

  • In forest understoreys, tree seedling survival and growth are determined mainly by light, water and nutrient availability

  • Aim of the study: This paper provides an analysis of growth and survival of twenty–year–old Scots pine saplings in relation to canopy cover density (CCD) gradients, from dense (D–CCD), sparse (S–CCD), and gap (G–CCD) situations

  • The results show that different CCD gradients result in major differences for sapling regeneration cores

Read more

Summary

Introduction

In forest understoreys, tree seedling survival and growth are determined mainly by light, water and nutrient availability. Forest ecologists and silviculturalists have emphasized the importance of creating canopy gaps (G–CCD) to generate spatial variation in order to promote tree regeneration, the effects of G–CCD on seedling recruitment may be offset by the development of dense forest understoreys. Many forests support dense understoreys that may compete with tree seedlings for resources such as light. This limits seedling recruitment even in gap conditions (G–CCD), and reduces the effectiveness of gaps in promoting seedling recruitment (Beckage et al, 2005; Ruuska et al, 2008).

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call