Abstract
To define the interaction between cigarette smoking and HLA polymorphisms in seropositive rheumatoid arthritis (RA), in the context of a recently identified amino acid-based HLA model for RA susceptibility. We imputed Immunochip data on HLA amino acids and classical alleles from 3 case-control studies (the Swedish Epidemiological Investigation of Rheumatoid Arthritis [EIRA] study [1,654 cases and 1,934 controls], the Nurses' Health Study [NHS] [229 cases and 360 controls], and the Korean RA Cohort Study [1,390 cases and 735 controls]). We examined the interaction effects of heavy smoking (>10 pack-years) and the genetic risk score (GRS) of multiple RA-associated amino acid positions (positions 11, 13, 71, and 74 in HLA-DRβ1, position 9 in HLA-B, and position 9 in HLA-DPβ1), as well as the interaction effects of heavy smoking and the GRS of HLA-DRβ1 4-amino acid haplotypes (assessed via attributable proportion due to interaction [AP] using the additive interaction model). Heavy smoking and all investigated HLA amino acid positions and haplotypes were associated with RA susceptibility in the 3 populations. In the interaction analysis, we found a significant deviation from the expected additive joint effect between heavy smoking and the HLA-DRβ1 4-amino acid haplotype (AP 0.416, 0.467, and 0.796, in the EIRA, NHS, and Korean studies, respectively). We further identified the key interacting variants as being located at HLA-DRβ1 amino acid positions 11 and 13 but not at any of the other RA risk-associated amino acid positions. For residues in positions 11 and 13, there were similar patterns between RA risk effects and interaction effects. Our findings of significant gene-environment interaction effects indicate that a physical interaction between citrullinated autoantigens produced by smoking and HLA-DR molecules is characterized by the HLA-DRβ1 4-amino acid haplotype, primarily by positions 11 and 13.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.