Abstract

Luteoviruses and poleroviruses are important plant viruses transmitted exclusively by aphids in a circulative manner via the aphid haemolymph. A chaperonin protein, GroEL, synthesized in aphids by a symbiotic bacterium, Buchnera aphidicola, is hypothesized to bind to virus particles in the haemolymph, thereby promoting transmission. To investigate this hypothesis, the GroEL-binding site for barley yellow dwarf virus (BYDV) was determined in vitro, and the abundance of GroEL protein in different aphid tissues was investigated. Virus binding to a peptide library representing the full GroEL molecule revealed a single binding site that coincides with the site that anchors two GroEL rings to form the native GroEL tetradecamer. In the functional form of the GroEL protein, virus binding would compete with the formation of the two GroEL rings. Using a mAb raised against a Buchnera-specific GroEL epitope, GroEL was detected in Buchnera cells by immunoblotting and immunocytochemistry, but not in the aphid haemolymph, fat body or gut. From the prediction here that GroEL-virus interactions are probably severely limited by competition with other GroEL molecules, and the evidence that GroEL is not available to interact with virus particles in vivo, it is concluded that GroEL-virus interactions are unlikely to contribute to virus transmission by aphids.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.