Abstract
The long-time asymptotic solution of the Korteweg-de Vries equation for general, step-like initial data is analyzed. Each sub-step in well-separated, multi-step data forms its own single dispersive shock wave (DSW); at intermediate times these DSWs interact and develop multiphase dynamics. Using the inverse scattering transform and matched-asymptotic analysis it is shown that the DSWs merge to form a single-phase DSW, which is the `largest' one possible for the boundary data. This is similar to interacting viscous shock waves (VSW) that are modeled with Burgers' equation, where only the single, largest-possible VSW remains after a long time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.