Abstract

Darwin envisaged male-male and male-female interactions as mutually supporting mechanisms of sexual selection, in which the best armed males were also the most attractive to females. Although this belief continues to predominate today, it has been challenged by sexual conflict theory, which suggests that divergence in the interests of males and females may result in conflicting sexual selection. This raises the empirical question of how multiple mechanisms of sexual selection interact to shape targeted traits. We investigated sexual selection on male morphology in the sexually dimorphic fly Prochyliza xanthostoma, using indices of male performance in male-male and male-female interactions in laboratory arenas to calculate gradients of direct, linear selection on male body size and an index of head elongation. In male-male combat, the first interaction with a new opponent selected for large body size but reduced head elongation, whereas multiple interactions with the same opponent favored large body size only. In male-female interactions, females preferred males with relatively elongated heads, but male performance of the precopulatory leap favored large body size and, possibly, reduced head elongation. In addition, the amount of sperm transferred (much of which is ingested by females) was an increasing function of both body size and head elongation. Thus, whereas both male-male and male-female interactions favored large male body size, male head shape appeared to be subject to conflicting sexual selection. We argue that conflicting sexual selection may be a common result of divergence in the interests of the sexes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call