Abstract

In a magnetic field graphene trilayers support a special multiplet of 12 zero(-energy)-mode Landau levels with a threefold degeneracy in Landau orbitals. A close look is made into such zero-mode levels in ABA-stacked trilayers, with the Coulomb interaction taken into account. It turns out that the zero-mode Landau levels of ABA trilayers are greatly afflicted with electron-hole and valley asymmetries, which come from general hopping parameters and which are enhanced by the Coulomb interaction and the associated vacuum effect, the orbital Lamb shift, that lifts the zero-mode degeneracy. These asymmetries substantially affect the way the zero-mode levels evolve, with filling, via Coulomb interactions; and its consequences are discussed in the light of experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.