Abstract

The importance of distribution system operator (DSO) continues to increase owing to the widespread use of distributed energy resources (DERs) in power distribution system. A virtual power plant (VPP) that mostly relies on small DERs tends to make operations more difficult for DSO, because the VPP attempts to maximize its profits regardless of the status of the corresponding distribution system if an appropriate cooperation mechanism is not present. In this study, an interaction-based VPP operation methodology using distribution system constraints (DSCs) is proposed for DSO voltage management, assuming that the VPP primarily participates in the wholesale energy market (WEM). For efficient cooperative operations between a DSO and VPP, the VPP's DERs are grouped according to the DERs locations in distribution lines. Then, distributed system constraints that represent appropriate power outputs for the specific resource groups are calculated through the interactions between the DSO and the VPP. Both Volt-Watt control (VWC) and Volt-var control (VVC) are considered for optimal DSC calculation. The VWC and VVC-based operation results are compared to evaluate the technical and economic effects from both the DSO and VPP perspectives. The case study results show that the proposed methodology keeps the distribution system's voltage within the target range, reduces economic losses by approximately 24% compared to traditional methodologies, and reduces the DSC calculation rate of DSOs by approximately half. These results indicate that the proposed methodology could be effectively utilized in DSO and VPP operations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.