Abstract

Quantum metrology studies the use of entanglement and other quantum resources to improve precision measurement. An interferometer using N independent particles to measure a parameter χ can achieve at best the "standard quantum limit" (SQL) of sensitivity δχ ∝ N <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">-1/2</sup> . The same interferometer using N entangled particles can achieve in principle the "Heisenberg limit" δχ ∝ N <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">-1</sup> , using exotic states, e.g., NooN states. Recent theoretical work argues that interactions among particles may be a valuable resource for quantum metrology, allowing scaling beyond the Heisenberg limit. Specifically, a k-particle interaction will produce sensitivity δχ ∝ N <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">-k</sup> with appropriate entangled states and δχ ∝ N <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">-(k-1/2)</sup> even without entanglement. Here we demonstrate this "super-Heisenberg" scaling in a nonlinear, non-destructive measurement of the magnetisation of an atomic ensemble.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call