Abstract

Peste des petits ruminants (PPR) is an acute, highly infectious, and highly pathogenic disease, which mainly damages small ruminants such as goats and sheep. Hemagglutinin protein (H), the main antigenic protein of peste des petits ruminants virus (PPRV), has been a hot spot in the research of genetic engineering vaccine for PPRV. In this study, the silkworm baculovirus surface display technology is combined with the transmembrane structure of the silkworm baculovirus envelope protein GP64 and different characteristics of the promoters to display four kinds of fusion proteins, which contain Pph-H, Pph-HJ, Pie1-H, and Pie1-HJ. The fusion proteins displayed on baculovirus surface have been detected by western blotting, cell surface immunofluorescence, and immunogold electron microscopy. In addition, the dominant form of PPR H displayed on baculovirus surface has been determined which is fusion protein mediated by Pph containing the hemagglutinin protein and full-length GP64, Pph-H. Furthermore, by comparing the fluorescence intensity of binding of hemagglutinin protein and signaling lymphocyte activation molecules (SLAM) in Vero-SLAM cells by immunocytochemistry, Pph-H can be combined with the receptor protein of PPRV, SLAM. It provides technical support for displaying the different structure of hemagglutinin and exploring the key sites of hemagglutinin and SLAM binding. Meanwhile, it is important for exploring the pathogenesis and immune mechanism of PPRV.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.