Abstract

The bacterial RadD enzyme is important for multiple genome maintenance pathways, including RecA DNA strand exchange and RecA-independent suppression of DNA crossover template switching. However, much remains unknown about the precise roles of RadD. One potential clue into RadD mechanisms is its direct interaction with the single-stranded DNA binding protein (SSB), which coats single-stranded DNA exposed during genome maintenance reactions in cells. Interaction with SSB stimulates the ATPase activity of RadD. To probe the mechanism and importance of RadD:SSB complex formation, we identified a pocket on RadD that is essential for binding SSB. In a mechanism shared with many other SSB-interacting proteins, RadD uses a hydrophobic pocket framed by basic residues to bind the C-terminal end of SSB. We found that RadD variants that substitute acidic residues for basic residues in the SSB binding site impair RadD:SSB complex formation and eliminate SSB stimulation of RadD ATPase activity in vitro. Additionally, mutant E. coli strains carrying charge reversal radD changes display increased sensitivity to DNA damaging agents synergistically with deletions of radA and recG, although the phenotypes of the SSB-binding radD mutants are not as severe as a full radD deletion. This suggests that cellular RadD requires an intact the interaction with SSB for full RadD function.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.