Abstract

Sporothrix brasiliensis and Sporothrix schenckii stand as the most virulent agents of sporotrichosis, a worldwide-distributed subcutaneous mycosis. The origin of Sporothrix virulence seems to be associated with fungal interactions with organisms living in the same environment. To assess this hypothesis, the growth of these two species in association with Pantoea agglomerans, a bacterium with a habitat similar to Sporothrix spp., was evaluated. Growth, melanization, and gene expression of the fungus were compared in the presence or absence of the bacterium in the same culture medium. Both S. brasiliensis and S. schenckii grew in contact with P. agglomerans yielding heavily melanized conidia after 5days of incubation at 30°C in Sabouraud agar. This increased melanin production occurred around bacterial colonies, suggesting that fungal melanization is triggered by a diffusible bacterial product, which is also supported by a similar pattern of melanin production during Sporothrix spp. growth in contact with heat-killed P. agglomerans. Growth of P. agglomerans was similar in the presence or absence of the fungus. However, the growth of S. brasiliensis and S. schenckii was initially inhibited, but further enhanced when these species were co-cultured with P. agglomerans. Moreover, fungi were able to use killed bacteria as both carbon and nitrogen sources for growth. Representational difference analysis identified overexpressed genes related to membrane transport when S. brasiliensis was co-cultured with the bacteria. The down-regulation of metabolism-related genes appears to be related to nutrient availability during bacterial exploitation. These findings can lead to a better knowledge on Sporothrix ecology and virulence.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call