Abstract

(14)N solid-state NMR powder patterns have been obtained at high field (21.1 T) using broadband, frequency-swept pulses and a piecewise acquisition method. This approach allowed the electric field gradient (EFG) tensor parameters to be obtained from model organic and inorganic systems featuring spherically asymmetric nitrogen environments (C(Q) values of up to ca. 4 MHz). The advantages and limitations of this experimental approach are discussed, and the observation of (14)N T(2) relaxation anisotropy in certain systems is also reported, which can shed light on dynamic processes, allowing motional geometries and jump rates to be probed. In particular, we show that observable effects of dynamics on (14)N spectra can be mediated by modulation of either the EFG tensor or heteronuclear dipolar couplings. It is demonstrated that the QCPMG protocol can be used to selectively enhance certain types of nitrogen environments on the basis of differences in T(2). We also present the results of extensive density functional theory calculations on these systems, which show remarkably good correlation with the experimental results and allow the prediction of tensor orientations, assignment of parameters to crystallographic sites, and a rationalization of the origin of the EFG tensors in terms of contributions from individual molecular orbitals. This work demonstrates that ultra-wideline (14)N solid-state NMR can, under favorable circumstances, be a straightforward, useful, and informative probe of molecular structure and dynamics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.