Abstract

Spo0A~P is the essential response regulator and transcription factor for sporulation initiation in Bacillus subtilis. The phosphorylation level of Spo0A in the cell is determined by the sensor kinase activity of the phosphorelay, donating phosphoryl groups, and the antagonistic effects of dephosphorylation mediated by the Rap and Spo0E families of phosphatases. In this study, spo0A mutations were generated that encoded proteins less sensitive to the activity of Spo0E than the wild-type protein. The Spo0A substitutions N12K, P60S, L62P and F88L are surface exposed and localize to the same face of the molecule as the active site and in its close proximity on the beta1-alpha1, beta3-alpha3 and beta4-alpha4 loops. The corresponding surface in the Spo0F response regulator was shown previously to be involved in the interaction with the RapB phosphatase, as well as the KinA histidine kinase and the Spo0B phosphotransferase. Thus, residues occupying the same position (N12:Q12, F88:Y84) and the same loops in Spo0A or Spo0F are involved in the interaction with the structurally unrelated Spo0E and RapB phosphatases, respectively, in addition to kinases and phosphotransferase. The specificity in phosphatase target recognition must be the result of side-chain variability within the response regulators and the interactions they promote. The residues involved in Spo0E interaction are identical in all Spo0A orthologues from spore-forming Bacilli encoding Spo0E phosphatases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call